abstract
| - Лагранжиа́н, функция Лагранжа динамической системы, названа в честь Жозефа Лагранжа, является функцией динамических переменных и описывает уравнения движения системы. Уравнения движения в этом подходе получаются из принципа наименьшего действия, записываемого как где действие — функционал обозначает множество параметров системы. Уравнения движения, полученные посредством функциональной производной, идентичны обычным уравнениям Эйлера-Лагранжа. Динамические системы, чьи уравнения движения могут быть получены посредством принципа наименьшего действия для удобно выбранной функции Лагранжа, известны как лагранжевые динамические системы. Примеров лагранжевых динамических систем много, начиная с классической версии Стандартной Модели в физике элементарных частиц и заканчивая уравнениями Ньютона в классической механике. Также к ним относятся чисто математические проблемы, такие как уравнения геодезических и проблема Плато.
|