The Bisuperior Grand Megahugebixul is equal to (((...((200![200(1)200(1)200,200,200])![200(1)200(1)200,200,200])...)![200(1)200(1)200,200,200])![200(1)200(1)200,200,200]) (with Bisuperior Megahugebixul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.
| Attributes | Values |
|---|
| rdfs:label
| - Bisuperior Grand Megahugebixul
|
| rdfs:comment
| - The Bisuperior Grand Megahugebixul is equal to (((...((200![200(1)200(1)200,200,200])![200(1)200(1)200,200,200])...)![200(1)200(1)200,200,200])![200(1)200(1)200,200,200]) (with Bisuperior Megahugebixul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.
|
| dcterms:subject
| |
| dbkwik:googology/p...iPageUsesTemplate
| |
| abstract
| - The Bisuperior Grand Megahugebixul is equal to (((...((200![200(1)200(1)200,200,200])![200(1)200(1)200,200,200])...)![200(1)200(1)200,200,200])![200(1)200(1)200,200,200]) (with Bisuperior Megahugebixul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.
|