About: Circumscribed sphere   Sponge Permalink

An Entity of Type : owl:Thing, within Data Space : dbkwik.org associated with source dataset(s)

In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron's vertices. The word circumsphere is sometimes used to mean the same thing. When it exists, a circumscribed sphere need not be the smallest sphere containing the polyhedron; for instance, the tetrahedron formed by a vertex of a cube and its three neighbors has the same circumsphere as the cube itself, but can be contained within a smaller sphere having the three neighboring vertices on its equator. All regular polyhedra have circumscribed spheres, but most irregular polyhedra do not have all vertices lying on a common sphere, although it is still possible to define the smallest containing sphere for such shapes.

AttributesValues
rdfs:label
  • Circumscribed sphere
rdfs:comment
  • In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron's vertices. The word circumsphere is sometimes used to mean the same thing. When it exists, a circumscribed sphere need not be the smallest sphere containing the polyhedron; for instance, the tetrahedron formed by a vertex of a cube and its three neighbors has the same circumsphere as the cube itself, but can be contained within a smaller sphere having the three neighboring vertices on its equator. All regular polyhedra have circumscribed spheres, but most irregular polyhedra do not have all vertices lying on a common sphere, although it is still possible to define the smallest containing sphere for such shapes.
sameAs
dcterms:subject
dbkwik:math/proper...iPageUsesTemplate
urlname
  • Circumsphere
Title
  • Circumsphere
abstract
  • In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron's vertices. The word circumsphere is sometimes used to mean the same thing. When it exists, a circumscribed sphere need not be the smallest sphere containing the polyhedron; for instance, the tetrahedron formed by a vertex of a cube and its three neighbors has the same circumsphere as the cube itself, but can be contained within a smaller sphere having the three neighboring vertices on its equator. All regular polyhedra have circumscribed spheres, but most irregular polyhedra do not have all vertices lying on a common sphere, although it is still possible to define the smallest containing sphere for such shapes. The radius of sphere circumscribed around a polyhedron is called the circumradius of .
Alternative Linked Data Views: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3217, on Linux (x86_64-pc-linux-gnu), Standard Edition
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2012 OpenLink Software