Attributes | Values |
---|
rdfs:label
| |
rdfs:comment
| - Арифметическое множество — множество натуральных чисел , которое может быть определено формулой в языке арифметики первого порядка, то есть если существует такая формула с одной свободной переменной что . Также можно говорить об арифметических множествах кортежей натуральных чисел, конечных последовательностей натуральных чисел, формул (при любой их фиксированной гёделевской нумерации) и, вообще, об арифметических множествах любых конструктивных объектов, кодируемых натуральными числами.
|
dbkwik:resource/4AivDxIwDSIeegYP-z9FLQ==
| |
dbkwik:resource/8WZQ1ZzI1NKp0sap4bN5GA==
| |
dbkwik:resource/9AXiqEjPKQ6Z9TSFEgu5Dg==
| |
dbkwik:resource/QjxfzC_GfdpB3emLTkwFmA==
| |
dbkwik:resource/fco9BXc0-68mng7EiSFwrA==
| |
dbkwik:resource/hEinrC5DRtFi1sSnEzNC-w==
| - Лекции по математической логике и теории алгоритмов
|
dbkwik:ru.science/...iPageUsesTemplate
| |
dbkwik:resource/Ws_SYt2NFkQUqaEEV9ZEBA==
| |
abstract
| - Арифметическое множество — множество натуральных чисел , которое может быть определено формулой в языке арифметики первого порядка, то есть если существует такая формула с одной свободной переменной что . Также можно говорить об арифметических множествах кортежей натуральных чисел, конечных последовательностей натуральных чисел, формул (при любой их фиксированной гёделевской нумерации) и, вообще, об арифметических множествах любых конструктивных объектов, кодируемых натуральными числами.
* Часть 2. Языки и исчисления //Лекции по математической логике и теории алгоритмов. — 2-е изд.. — М.: МЦНМО, 2002.
* Страница 0 - краткая статья
* Страница 1 - энциклопедическая статья
* Разное - на страницах: 2 , 3 , 4 , 5
* Прошу вносить вашу информацию в «Арифметическое множество 1», чтобы сохранить ее
|